IP versi 6


Alamat IP versi 6 (sering disebut sebagai alamat IPv6) adalah sebuah jenis pengalamatan jaringan yang digunakan di dalam protokol jaringan TCP/IP yang menggunakan protokol IP versi 6. Panjang totalnya adalah 128-bit, dan secara teoritis dapat mengalamati hingga 2128=3,4 x 1038 host komputer di seluruh dunia. Contoh alamat IP versi 6 adalah 21DA:00D3:0000:2F3B:02AA:00FF:FE28:9C5A.

Berbeda dengan IPv4 yang hanya memiliki panjang 32-bit (jumlah total alamat yang dapat dicapainya mencapai 4,294,967,296 alamat), alamat IPv6 memiliki panjang 128-bit. IPv4, meskipun total alamatnya mencapai 4 miliar, pada kenyataannya tidak sampai 4 miliar alamat, karena ada beberapa limitasi, sehingga implementasinya saat ini hanya mencapai beberapa ratus juta saja. IPv6, yang memiliki panjang 128-bit, memiliki total alamat yang mungkin hingga 2128=3,4 x 1038 alamat. Total alamat yang sangat besar ini bertujuan untuk menyediakan ruang alamat yang tidak akan habis (hingga beberapa masa ke depan), dan membentuk infrastruktur routing yang disusun secara hierarkis, sehingga mengurangi kompleksitas proses routing dan tabel routing.

Sama seperti halnya IPv4, IPv6 juga mengizinkan adanya DHCP Server sebagai pengatur alamat otomatis. Jika dalam IPv4 terdapat dynamic address dan static address, maka dalam IPv6, konfigurasi alamat dengan menggunakan DHCP Server dinamakan dengan stateful address configuration, sementara jika konfigurasi alamat IPv6 tanpa DHCP Server dinamakan dengan stateless address configuration.

Seperti halnya IPv4 yang menggunakan bit-bit pada tingkat tinggi (high-order bit) sebagai alamat jaringan sementara bit-bit pada tingkat rendah (low-order bit) sebagai alamat host, dalam IPv6 juga terjadi hal serupa. Dalam IPv6, bit-bit pada tingkat tinggi akan digunakan sebagai tanda pengenal jenis alamat IPv6, yang disebut dengan Format Prefix (FP). Dalam IPv6, tidak ada subnet mask, yang ada hanyalah Format Prefix.

Pengalamatan IPv6 didefinisikan dalam RFC 2373

Format Alamat

Dalam IPv6, alamat 128-bit akan dibagi ke dalam 8 blok berukuran 16-bit, yang dapat dikonversikan ke dalam bilangan heksadesimal berukuran 4-digit. Setiap blok bilangan heksadesimal tersebut akan dipisahkan dengan tanda titik dua (:). Karenanya, format notasi yang digunakan oleh IPv6 juga sering disebut dengan colon-hexadecimal format, berbeda dengan IPv4 yang menggunakan dotted-decimal format.

Berikut ini adalah contoh alamat IPv6 dalam bentuk bilangan biner:

0010000111011010000000001101001100000000000000000010111100111011000000101010101000000000
1111111111111110001010001001110001011010

Untuk menerjemahkannya ke dalam bentuk notasi colon-hexadecimal format, angka-angka biner di atas harus dibagi ke dalam 8 buah blok berukuran 16-bit:

0010000111011010 0000000011010011 0000000000000000 0010111100111011 0000001010101010
0000000011111111 1111111000101000 1001110001011010

Lalu, setiap blok berukuran 16-bit tersebut harus dikonversikan ke dalam bilangan heksadesimal dan setiap bilangan heksadesimal tersebut dipisahkan dengan menggunakan tanda titik dua. Hasil konversinya adalah sebagai berikut:

21DA:00D3:0000:2F3B:02AA:00FF:FE28:9C5A

Penyederhanaan bentuk alamat

Alamat di atas juga dapat disederhanakan lagi dengan membuang angka 0 pada awal setiap blok yang berukuran 16-bit di atas, dengan menyisakan satu digit terakhir. Dengan membuang angka 0, alamat di atas disederhanakan menjadi:

21DA:D3:0:2F3B:2AA:FF:FE28:9C5A

Konvensi pengalamatan IPv6 juga mengizinkan penyederhanaan alamat lebih jauh lagi, yakni dengan membuang banyak karakter 0, pada sebuah alamat yang banyak angka 0-nya. Jika sebuah alamat IPv6 yang direpresentasikan dalam notasi colon-hexadecimal format mengandung beberapa blok 16-bit dengan angka 0, maka alamat tersebut dapat disederhanakan dengan menggunakan tanda dua buah titik dua (:). Untuk menghindari kebingungan, penyederhanaan alamat IPv6 dengan cara ini sebaiknya hanya digunakan sekali saja di dalam satu alamat, karena kemungkinan nantinya pengguna tidak dapat menentukan berapa banyak bit 0 yang direpresentasikan oleh setiap tanda dua titik dua (:) yang terdapat dalam alamat tersebut. Tabel berikut mengilustrasikan cara penggunaan hal ini.

Alamat asli Alamat asli yang disederhanakan Alamat setelah dikompres
FE80:0000:0000:0000:02AA:00FF:FE9A:4CA2 FE80:0:0:0:2AA:FF:FE9A:4CA2 FE80::2AA:FF:FE9A:4CA2
FF02:0000:0000:0000:0000:0000:0000:0002 FF02:0:0:0:0:0:0:2 FF02::2

Untuk menentukan berapa banyak bit bernilai 0 yang dibuang (dan digantikan dengan tanda dua titik dua) dalam sebuah alamat IPv6, dapat dilakukan dengan menghitung berapa banyak blok yang tersedia dalam alamat tersebut, yang kemudian dikurangkan dengan angka 8, dan angka tersebut dikalikan dengan 16. Sebagai contoh, alamat FF02::2 hanya mengandung dua blok alamat (blok FF02 dan blok 2). Maka, jumlah bit yang dibuang adalah (8-2) x 16 = 96 buah bit.

Format Prefix

Dalam IPv4, sebuah alamat dalam notasi dotted-decimal format dapat direpresentasikan dengan menggunakan angka prefiks yang merujuk kepada subnet mask. IPv6 juga memiliki angka prefiks, tapi tidak didugnakan untuk merujuk kepada subnet mask, karena memang IPv6 tidak mendukung subnet mask.

Prefiks adalah sebuah bagian dari alamat IP, di mana bit-bit memiliki nilai-nilai yang tetap atau bit-bit tersebut merupakan bagian dari sebuah rute atau subnet identifier. Prefiks dalam IPv6 direpesentasikan dengan cara yang sama seperti halnya prefiks alamat IPv4, yaitu [alamat]/[angka panjang prefiks]. Panjang prefiks menentukan jumlah bit terbesar paling kiri yang membuat prefiks subnet. Sebagai contoh, prefiks sebuah alamat IPv6 dapat direpresentasikan sebagai berikut:

3FFE:2900:D005:F28B::/64

Pada contoh di atas, 64 bit pertama dari alamat tersebut dianggap sebagai prefiks alamat, sementara 64 bit sisanya dianggap sebagai interface ID.

Jenis-jenis Alamat IPv6

IPv6 mendukung beberapa jenis format prefix, yakni sebagai berikut:

  • Alamat Unicast, yang menyediakan komunikasi secara point-to-point, secara langsung antara dua host dalam sebuah jaringan.
  • Alamat Multicast, yang menyediakan metode untuk mengirimkan sebuah paket data ke banyak host yang berada dalam group yang sama. Alamat ini digunakan dalam komunikasi one-to-many.
  • Alamat Anycast, yang menyediakan metode penyampaian paket data kepada anggota terdekat dari sebuah group. Alamat ini digunakan dalam komunikasi one-to-one-of-many. Alamat ini juga digunakan hanya sebagai alamat tujuan (destination address) dan diberikan hanya kepada router, bukan kepada host-host biasa.

Jika dilihat dari cakupan alamatnya, alamat unicast dan anycast terbagi menjadi alamat-alamat berikut:

  • Link-Local, merupakan sebuah jenis alamat yang mengizinkan sebuah komputer agar dapat berkomunikasi dengan komputer lainnya dalam satu subnet.
  • Site-Local, merupakan sebuah jenis alamat yang mengizinkan sebuah komputer agar dapat berkomunikasi dengan komputer lainnya dalam sebuah intranet.
  • Global Address, merupakan sebuah jenis alamat yang mengizinkan sebuah komputer agar dapat berkomunikasi dengan komputer lainnya dalam Internet berbasis IPv6.

Sementara itu, cakupan alamat multicast dimasukkan ke dalam struktur alamat.

Unicast Address

Alamat IPv6 unicast dapat diimplementasikan dalam berbagai jenis alamat, yakni:

  • Alamat unicast global
  • Alamat unicast site-local
  • Alamat unicast link-local
  • Alamat unicast yang belum ditentukan (unicast unspecified address)
  • Alamat unicast loopback
  • Alamat unicast 6to4
  • Alamat unicast ISATAP

Unicast global addresses

Alamat unicast global IPv6 mirip dengan alamat publik dalam alamat IPv4. Dikenal juga sebagai Aggregatable Global Unicast Address. Seperti halnya alamat publik IPv4 yang dapat secara global dirujuk oleh host-host di Internet dengan menggunakan proses routing, alamat ini juga mengimplementasikan hal serupa. Struktur alamat IPv6 unicast global terbagi menjadi topologi tiga level (Public, Site, dan Node).

Field Panjang Keterangan
001 3 bit Berfungsi sebagai tanda pengenal alamat, bahwa alamat ini adalah sebuah alamat IPv6 Unicast Global.
Top Level Aggregation Identifier (TLA ID) 13 bit Berfungsi sebagai level tertinggi dalam hierarki routing. TLA ID diatur oleh Internet Assigned Name Authority (IANA), yang mengalokasikannya ke dalam daftar Internet registry, yang kemudian mengolasikan sebuah TLA ID ke sebuah ISP global.
Res 8 bit Direservasikan untuk penggunaan pada masa yang akan datang (mungkin untuk memperluas TLA ID atau NLA ID).
Next Level Aggregation Identifier (NLA ID) 24 bit Berfungsi sebagai tanda pengenal milik situs (site) kustomer tertentu.
Site Level Aggregation Identifier (SLA ID) 16 bit Mengizinkan hingga 65536 (216) subnet dalam sebuah situs individu. SLA ID ditetapkan di dalam sebuah site. ISP tidak dapat mengubah bagian alamat ini.
Interface ID 64 bit Berfungsi sebagai alamat dari sebuah node dalam subnet yang spesifik (yang ditentukan oleh SLA ID).

Unicast site-local addresses

Alamat unicast site-local IPv6 mirip dengan alamat privat dalam IPv4. Ruang lingkup dari sebuah alamat terdapat pada internetwork dalam sebuah site milik sebuah organisasi. Penggunaan alamat unicast global dan unicast site-local dalam sebuah jaringan adalah mungkin dilakukan. Prefiks yang digunakan oleh alamat ini adalah FEC0::/48.

Field Panjang Keterangan
111111101100000000000000000000000000000000000000 48 bit Nilai ketetapan alamat unicast site-local
Subnet Identifier 16 bit Mengizinkan hingga 65536 (216) subnet dalam sebuah struktur subnet datar. Administrator juga dapat membagi bit-bit yang yang memiliki nilai tinggi (high-order bit) untuk membuat sebuah infrastruktur routing hierarkis.
Interface Identifier 64 bit Berfungsi sebagai alamat dari sebuah node dalam subnet yang spesifik.

Unicast link-local address

Alamat unicast link-local adalah alamat yang digunakan oleh host-host dalam subnet yang sama. Alamat ini mirip dengan konfigurasi APIPA (Automatic Private Internet Protocol Addressing) dalam sistem operasi Microsoft Windows XP ke atas. host-host yang berada di dalam subnet yang sama akan menggunakan alamat-alamat ini secara otomatis agar dapat berkomunikasi. Alamat ini juga memiliki fungsi resolusi alamat, yang disebut dengan Neighbor Discovery. Prefiks alamat yang digunakan oleh jenis alamat ini adalah FE80::/64.

Field Panjang Keterangan
1111111010000000000000000000000000000000000000000000000000000000 64 bit Berfungsi sebagai tanda pengenal alamat unicast link-local.
Interface ID 64 bit Berfungsi sebagai alamat dari sebuah node dalam subnet yang spesifik.

Unicast unspecified address

Alamat unicast yang belum ditentukan adalah alamat yang belum ditentukan oleh seorang administrator atau tidak menemukan sebuah DHCP Server untuk meminta alamat. Alamat ini sama dengan alamat IPv4 yang belum ditentukan, yakni 0.0.0.0. Nilai alamat ini dalam IPv6 adalah 0:0:0:0:0:0:0:0 atau dapat disingkat menjadi dua titik dua (::).

Unicast Loopback Address

Alamat unicast loopback adalah sebuah alamat yang digunakan untuk mekanisme interprocess communication (IPC) dalam sebuah host. Dalam IPv4, alamat yang ditetapkan adalah 127.0.0.1, sementara dalam IPv6 adalah 0:0:0:0:0:0:0:1, atau ::1.

Unicast 6to4 Address

Alamat unicast 6to4 adalah alamat yang digunakan oleh dua host IPv4 dan IPv6 dalam Internet IPv4 agar dapat saling berkomunikasi. Alamat ini sering digunakan sebagai pengganti alamat publik IPv4. Alamat ini aslinya menggunakan prefiks alamat 2002::/16, dengan tambahan 32 bit dari alamat publik IPv4 untuk membuat sebuah prefiks dengan panjang 48-bit, dengan format 2002:WWXX:YYZZ::/48, di mana WWXX dan YYZZ adalah representasi dalam notasi colon-decimal format dari notasi dotted-decimal format w.x.y.z dari alamat publik IPv4. Sebagai contoh alamat IPv4 157.60.91.123 diterjemahkan menjadi alamat IPv6 2002:9D3C:5B7B::/48.

Meskipun demikian, alamat ini sering ditulis dalam format IPv6 Unicast global address, yakni 2002:WWXX:YYZZ:SLA ID:Interface ID.

Unicast ISATAP Address

Alamat Unicast ISATAP adalah sebuah alamat yang digunakan oleh dua host IPv4 dan IPv6 dalam sebuah Intranet IPv4 agar dapat saling berkomunikasi. Alamat ini menggabungkan prefiks alamat unicast link-local, alamat unicast site-local atau alamat unicast global (yang dapat berupa prefiks alamat 6to4) yang berukuran 64-bit dengan 32-bit ISATAP Identifier (0000:5EFE), lalu diikuti dengan 32-bit alamat IPv4 yang dimiliki oleh interface atau sebuah host. Prefiks yang digunakan dalam alamat ini dinamakan dengan subnet prefix. Meski alamat 6to4 hanya dapat menangani alamat IPv4 publik saja, alamat ISATAP dapat menangani alamat pribadi IPv4 dan alamat publik IPv4.

Multicast Address

Alamat multicast IPv6 sama seperti halnya alamat multicast pada IPv4. Paket-paket yang ditujukan ke sebuah alamat multicast akan disampaikan terhadap semua interface yang dikenali oleh alamat tersebut. Prefiks alamat yang digunakan oleh alamat multicast IPv6 adalah FF00::/8.

Field Panjang Keterangan
11111111 8 bit Tanda pengenal bahwa alamat ini adalah alamat multicast.
Flags 4 bit Berfungsi sebagai tanda pengenal apakah alamat ini adalah alamat transient atau bukan. Jika nilainya 0, maka alamat ini bukan alamat transient, dan alamat ini merujuk kepada alamat multicast yang ditetapkan secara permanen. Jika nilainya 1, maka alamat ini adalah alamat transient.
Scope 4 bit Berfungsi untuk mengindikasikan cakupan lalu lintas multicast, seperti halnya interface-local, link-local, site-local, organization-local atau global.
Group ID 112 bit Berfungsi sebagai tanda pengenal group multicast

Anycast Address

Alamat Anycast dalam IPv6 mirip dengan alamat anycast dalam IPv4, tapi diimplementasikan dengan cara yang lebih efisien dibandingkan dengan IPv4. Umumnya, alamat anycast digunakan oleh Internet Service Provider (ISP) yang memiliki banyak klien. Meskipun alamat anycast menggunakan ruang alamat unicast, tapi fungsinya berbeda daripada alamat unicast.

IPv6 menggunakan alamat anycast untuk mengidentifikasikan beberapa interface yang berbeda. IPv6 akan menyampaikan paket-paket yang dialamatkan ke sebuah alamat anycast ke interface terdekat yang dikenali oleh alamat tersebut. Hal ini sangat berbeda dengan alamat multicast, yang menyampaikan paket ke banyak penerima, karena alamat anycast akan menyampaikan paket kepada salah satu dari banyak penerima.


Konsep Dasar Cellular Technology

Sistem selular adalah sistem yang canggih, sebab sistem ini membagi suatu kawasan dalam beberapa sel kecil. Hal ini digunakan untuk memastikan bahwa frekuensi dapat meluas sehingga mencapai ke semua bagian pada kawasan tertentu sehingga beberapa pengguna dapat menggunakan ponsel mereka secara simultan tanpa jeda dan tanpa terputus-putus.

Definisi Selular
Pada sistem seluler, untuk menggambarkan cakupan area secara geografis digunakanlah penggambaran heksagonal. Area inilah yang disebut sel (Cell). Mengapa bentuknya heksagonal bukan lingkaran untuk menggambarkan sebuah sel?

Anda dapat melihat pada gambar diatas, jika anda menggambarkan sebuah sel dalam bentuk lingkaran, maka sel satu dengan yang lainnya tidak akan dapat saling berkesinambungan dengan sempurna. Pada sistem selular, semua daerah dapat dicakup tanpa adanya gap sel satu dengan yang lain sehingga kurva heksagonal lebih mewakili, kerena cakupan area dapat tergambarkan dengan rapih serta mencakup keseluruhan area.

Untuk lebih jelasnya anda dapat melihat pada gambar dibawah ini, dimana sebuah Antena akan dapat mengirim dan menerima sinyal pada tiga daerah yang berbeda, dimana setiap sel hanya tercakup sebagian saja dari ketiga sel yang tercakup.


Beberapa komponen penting pembentuk sistem dari seluler adalah peralatan seluler itu sendiri seperti Base Station Radio, Antena dan Base Station Controller yang akan mengatur lalulintas dari beberapa sel dan saling berhubungan pula dengan jaringan telepon publik.

Arsitektur Jaringan GSM
Jaringan di dalam Global System for Mobile Telecommunication (GSM) disusun dari beberapa entitas fungsional yang dibagi menjadi 3 (tiga) bagian yaitu:

A. Mobile Station
Mobile Station yang merupakan perangkat dibawa oleh pelanggan atau kata lain telepon selulernya yang akan menerima maupun mengirimkan data. Mobile Station terdiri dari Radio transceiver, Display dan Digital Signal Proccesor (DSP) dan kartu SIM (Subscriber Identity Module).

Dalam Global System for Mobile telecommunication (GSM) identitas panggilan tidak dihubungkan dengan ponselnya tetapi dengan kartu SIM sehingga bila kartu SIM dimasukan keterminal lain maka pengguna akan tetap menerima panggilan dan dapat melakukan pemanggilan dari terminal tersebut serta dapat menerima layanan pelanggan yang lainnya.

Mobile Equipment atau Ponsel secara unik dapat dikenali dengan International Mobile Subscriber Identity (IMEI) sedangkan kartu SIM memiliki InternationalMobile Subscriber Identity (IMSI) yang dapat mengidentifikasi pelanggan. Akan tetapi IMEI dengan IMSI tidak saling tergantung maka dapat digunakan dalam mobilitas pribadi. Dengan kata lain kita dapat memindahkan kartu SIM ke ponsel manapun juga.

B. Base Station Subsystem (BBS)
Base Station Subsystem (BBS) merupakan peralatan yang mengendalikan hubungan antara radio dengan mobile station. Base Station Subsystem terdiri atas dua bagian yaitu : Base Transceiver Station (BTS) yang mengandung transceiver radio yang menangani sebuah cell atau daerah dan berhubungan dengan mobile station dan Base Station Controller (BSC) yang cara kerjanya mengatur hubungan radio antara satu dan beberapa Base Transceiver Station.

Selain itu juga Base Transceiver Station merupakan penghubung antara Mobile station dengan Mobile Service Switching Center (MSC)


C. Network Subsystem
Network Subsystem yang merupakan bagian utamanya adalah Mobile Service Switcing Center (MSC) kegunaannya untuk melakukan switching pengguna jaringan bergerak dengan pengguna jaringan bergerak atau tetap.

Mobile Service Switching Center (MSC) juga menyediakan hubungan dengan jaringan PSTN dan ISDN. Pensinyalan di antara entitas fungsional ini menggunakan Signaling Sistem Number 7 (SS7) yang digunakan untuk Trunk Signaling dalam ISDN dan digunakan secara luas di jaringan umum sekarang.

Informasi mengenai Mobile Station disimpan dalam dua Location Register yang merupakan sebuah basis data. Yang pertama adalah Home Location Register (HLR) yang berisi semua informasi administrasi dari semua pelanggan yang terdaftar disuatu jaringan GSM beserta lokasi dari mobile station. Lokasi dari suatu Mobile Station disimpan dalam bentuk Mobile Station Roaming Number (MSRN).

Sedangkan yang kedua adalah Visitor Location Register (VLR) berisi informasi berisi administrasi terpilih dari Home Location Register (HLR) yang dibutukan untuk control pangilan dan izin bagi pengguna service berlangganan untuk setiap pengguna.

Register lain yang digunakan untuk autentikasi dan keamanan adalah Equipment Identity Register (EIR) yang merupakan basis data yang berisi daftar Mobile Station yang valid dalam jaringan GSM yang teridentifikasi lewat nomor IMEI. Sedangkan Autenthication Center adalah basis data terproteksi yang menyimpan salinan PIN (Personal Identity Number) yang digunakan untuk autentifikasi.


Sumber:dhivacell.wordpress.com


ISDN (Integrated Services Digital Network)

ISDN (Integrated Services Digital Network) adalah suatu sistem telekomunikasi di mana layanan antara data, suara, dan gambar diintegrasikan ke dalam suatu jaringan, yang menyediakan konektivitas digital ujung ke ujung untuk menunjang suatu ruang lingkup pelayanan yang luas. Para pemakai ISDN diberikan keuntungan berupa fleksibilitas dan penghematan biaya, karena biaya untuk sistem yang terintegrasi ini akan jauh lebih murah apabila menggunakan sistem yang terpisah.

Para pemakai juga memiliki akses standar melalui satu set interface pemakai jaringan multiguna standar. ISDN merupakan sebuah bentuk evolusi telepon local loop yang memepertimbangkan jaringan telepon sebagai jaringan terbesar di dunia telekomunikasi.

Di dalam ISDN terdapat dua jenis pelayanan, yaitu:

  1. Basic Rate Inteface (BRI)
  2. Primary Rate Interface (PRI)

Sejarah ISDN

Sebelum terciptanya ISDN, ada juga beberapa jaringan konvensional yang digunakan dalam masyarakat, yaitu:

  1. Jaringan Telepon (PSTN = Public Switched Telephone Network)
  2. Jaringan komunikasi data (PDN = Public Data Network)
  3. Jaringan Telex (PSTX)

Jaringan-jaringan konvensional ini digabungkan menjadi jaringan digital yang terintegrasi dengan cara mendigitalisasi jaringan konvensional tersebut, kemudian jaringan-jaringan yang telah memenuhi konsep Integrated Digital Network diintegrasikan sehingga pada akhirnya kita dapat mengintegrasikan semua jaringan konvensional ini menjadi sebuah jaringan terpadu yang memiliki konsep digital sampai ke pengguna akhir.
Melihat langkah-langkah penggabungan diatas, dapat disimpulkan bahwa IDN merupakan asal mula terciptanya ISDN. Awalnya, telepon jaringan menggunakan kawat atau kabel untuk sarana koneksinya.

Namun pada permulaan tahun 1960-an, sistem telepon ini mulai dikonversi dari sistem analog menggunakan kabel, ke sambungan paket sistem digital. Asal mula munculnya ISDN pita lebar bermula ketika pembuatan trial broadband rampung pada jaringan lokal Bigfon di Berlin pada tahun 1984 hingga kemudian pada tahun yang sama penggunaaan ISDN mulai disosialisasikan ke masyarakat. Sosialisasi ini dimulai oleh CCITT (sekarang ITU), yaitu sebuah organisasi dibawah naungan PBB yang menangani bidang standarisasi telekomunikasi.

Latar Belakang ISDN

ISDN muncul menjadi sebuah sarana telekomunikasi di tengah masyarakat akibat adanya pertumbuhan permintaan dalam hal komunikasi suara, data, dan gambar, namun dengan biaya yang rendah dan fleksibilitas yang tinggi. Disamping itu, perkembangan perangkat terminal CTE memberikan kebebasan kepada pelanggan dalam memilih alat komunikasi yang berstandarkan ISDN.

Keuntungan ISDN

1. ISDN menawarkan kecepatan dan kualitas tinggi dalam pengiriman data, bahkan 10 kali lebih cepat disbanding PSTN
2. Efisien. Delam satu saluran saja dapat mengirim berbagai jenis layanan (gambar, suara, video) sehingga efisien dalam pemanfaatan waktu
3. Fleksibel. Single interface untuk terminal bervariasi
4. Hemat biaya. Hanya membutuhan satu terminal tunggal untuk audio dan video

Model Jaringan

1. Model Konvensional. Pada masa ini, masing-masing sistem jaringan terpisah, sehingga pengguna akan mengakses ke masing-masing jaringan untuk tiap keperluan layanan yang berbeda satu dengan yang lainnya.
2. Model awal ISDN. Pada masa ini, masing-masing jaringan merupakan subnetwork dari ISDN yang dilengkapi dengan sebuah set saluran dan protokol untuk mengakses ke jaringan. Pengguna terdaftar sebangai pelanggan satu jaringan dengan tetap meminta layanan yang berbeda ke sistem yang juga masih berbeda-beda, tetapi telah menggunakan akses yang sama. Hanya sistemnya saja yang masih berbeda.
3. Model jaringan ISDN penuh. Pengguna bisa mengakses ke satu jaringan lewat satu jalur akses yang sama. Sebab sistem ISDN menyediakan dan telah dapat melayani segala jenis pelayanan yang berbeda-beda

Komponen ISDN

Sistem ISDN terdiri dari lima buah komponen terminal utama yang bertugas untuk menjalankan proses layanannya, yaitu terminal Equipment, terminal Adapter, Network Termination, Line Termination, dan Local Exchange.

Pelayanan ISDN

Ada beberapa fitur layanan utama yang ditawarkan oleh sistem ISDN. Yaitu:

  1. Bearer Service.
    Bearer Service merupakan layanan awal dan dasar yang diperuntukkan bagi pengguna yang baru bergabung dengan jaringan ISDN. Pengguna baru akan mendapatkan layanan dasar ini begitu mendaftar sebagai pelanggan ISDN. Bearer Service menyediakan layanan transfer mode,transfer rate, dan transfer capability. Layanan ini menunjukkan dan menjelaskan karakteristik jaringan transmisi yang ditawarkan oleh operator penyedia jaringan antara terminal pengguna dan jaringan.
  2. TeleService
    TeleService adalah layanan yang pada dasaranya telah diberikan dari awal oleh jaringan ISDN, namununtuk menggunakannya harus didukung dari peralatan atau terminal pengguna. Jika pengguna masih menggunakan peralatan standar, maka layanan TeleService ini tidak dapat digunakan.
  3. Supplementary Service
    Supplementary Service adalah layanan tambahan yang disediakan oleh jaringan ISDN ke pengguna, namun dalam mengaksesnya, pengguna dibebankan biaya tambahan ketika mengaktifkan layanan ini. Supplementary Service digunakan bersama dengan layanan dasar jaringan ISDN.

Aplikasi yang didukung oleh ISDN

Broadcast-ISDN

Akses Broadcast-ISDN muncul akibat dari usaha Jerman melengkapi perumahan dan perkantoran. Ada dua cara untuk memperbesar kapasitas pengiriman data lewat ISDN.

  1. SDH, yaitu alat untuk beban 150 Mbps dengan pelayanan yang berbeda dari laju data yang bervariasi
  2. ATM, yaitu pengembangan penyambungan paket yang memakai ukuran paket yang sama yang diesebut dengan istilah sel

Pelayanan Broadcast ISDN hampir mirip dengan pelayanan ISDN, yaitu mempunyai:.

  • Bearer Service, yaitu pemberian kanal informasi melalui pita lebar tertentu
  • TeleService, yaitu pengembangan dari jenis layanan yang pertama, yang bertumpu pada kemampuan switch dan CPE. TeleService dibagi menjadi dua kelompok besar yaitu Pelayanan Interaktif (mencakup Conversational, Message, dan Retrieval Service), dan Pelayanan Distributif (mencakup distribusi dengan kemampuan kontrol penerimaan dan tanpa kemampuan kontrol penerimaan)

ISDN di Indonesia

Aplikasi layanan ISDN di Indonesia disediakan oleh PT Telkom. ISDN merupakan hasil evolusi dari PSTN. Proses evolusi ini dilakukan dengan pelayanan berbasis PSTN, kemudian berubah ke pelayanan SMDS, sampai akhirnya pelayanan ISDN dan Broadcast-ISDN.

Layanan ISDN di Indonesia

  • Direct Dialling In. teleponyang tersambung ke jaringan PSTN/ISDN dapat secara langsung memanggil pesawat cabang STLO.
  • Call Diversion. Pelanggan yang tidak dapat menerima panggilan dapat mengalihkan panggilannya ke nomor lain atau ke layanan penjawab (answering service)
  • Do Not Disturb. Pelanggan yang memang sengaja tidak ingin menerima panggilan untuk suatu periode waktu tertentu dapat mengalihkan panggilannya ke nomor lain.
  • PBX Line Hunting Service. Seleksi otomatis dari suatu bundel saluran yang melayani pelanggan ke nomor direktori umum pelanggan tersebut.
  • Three Party Service. Pelanggan yang sedang melakukan percakapan telepon dapat menahan percakapannya dan melakukan panggilan dengan pihak ketiga.
  • Freephone. Sebuah nomor khusus dapat dialokasikan kepada pelanggan dan beban atas setiap panggilan yang dilakukan kepada nomor ini biayanya dibebankan kepada pelanggan, bukan kepada pihak yang memanggil.
  • Speed Dialling. Pelanggan dapat melakukan panggilan hanya dengan memutar suatu kode singkat atas sebuah nomor tertentu yang sudah diset dan tidak perlu memutar seluruh nomor lengkap.
  • Call Waiting. Pelanggan yang sedang melakukan percakapan diberikan tanda bahwa ada panggilan masuk lainnya.
  • Centrex Service. Layanan ini umunya hanya terdpat pada PABX dengan menggunakan sentral telepon PSTN/IDN yang diperlengkap secara khusus.
  • Malicious Call Identification. Pelanggan dapat meminta identifikasi panggilan yang diterimanya.

ATM(Anjungtan Tunai Mandiri)

1. MENGENAL ATM

Dari sumber yang penulis peroleh, yaitu Kompas.co.id menjelaskan bahwa ATM adalah sebuah alat atau media elektronik yang menyediakan sebuah layanan kepada nasabah-nasabah bank dan mengizinkannya untuk mengambil uang atau mengecek saldo simpanan dari bank-bank tertentu tanpa pelayanan dari seorang “Teller” manusia.
Banyak ATM juga telah mengizinkan para nasabah bank untuk membeli keperluan hidup melalui tarnsaksi ATM. Artinya ATM tidak hanya melayani nasabah bank untuk menyimpan atau mengambil uang secara otomatis. Seperti banyak ATM yang memberikan kemudahan nasabah untuk mentransfer uang ke sesama bank atau ke bank-bank yang berbeda, membeli pulsa atau perangko, dan lain sebagainya.
ATM (AutomaticTeller Machine, atau Automated Teller Machine, atau di Indonesia dikenal sebagai Anjungan Tunai Mandiri) sudah bukan merupakan benda asing lagi bagi rakyat negara ini. Penduduk kota maupun desa sudah sangat akrab dengan mesin pencetak uang otomatis ini. Dengan perkembangan teknologi yang pesat saat ini, ATM sudah menyediakan banyak kemudahan bagi semua orang, transaksi apapun dapat dilakukan melalui alat ini, mulai dari penarikan tunai, transfer uang, pemindah bukuan, pembayaran tagihan, bahkan setoran tunai maupun cetak buku dapat dilakukan di ATM, dan akses ATM juga dapat dilakukan via mobile bahkan internet.
Namun sedikit pula yang mengetahui secara rinci bagaimana mesin ini bekerja dan melayani setiap nasabahnya serta seperti apa awal dari munculnya mesin ini. Semua pertanyaan tersebut akan dibahas pada subjudul berikutnya.

2. SEJARAH ATM (AUTOMATIC TELLER MACHINE atau ANJUNGAN TUNAI MANDIRI)

Pada mulanya mesin pintar ini ditemukan oleh Don Wetzel, Vice President of Product Planning pada perusahaan Docutel (Sumber: Kompas.co.id). Kompas.co.id juga menerangkan bahwa konsep ATM pertama kali lahir pada tahun 1968, lalu prototipenya muncul setahun kemudian, dan akhirnya Ducotel mendaftarkannya pada Kantor paten pada tahun 1973.
Perusahaan Docutel membeli mesin ATM dari tiga orang pembuatnya, yaitu Don Wetzel, yang pada saat itu adalah seorang Vice President of Product Planning di Docutel, Tom Barnes, Kepala Mekanik dan George Chastian, seorang insyinyur listrik. Ide awalnya berasal dari Wetzel, ketika mengantre di bank. Wetzel kerapkali merasa capai ketika berurusan dengan bank yang harus selalu mengantre untuk satu layanan sebagai nasabah bank. Hingga akhirnya ketiga penemu ini menciptakan mesin ATM yang di Indonesia dikenal dengan istilah Anjungan Tunai Mandiri. Dan dana yang dihabiskan untuk sebuah mesin ATM pertama kali adalah sekitar lima juta dollar. Kemudian Perusahaan Docutel mengembangkan peralatan penanganan bagasi secara otomatis pada tahun 1968.
ATM pertama dipasang atau digunakan oleh sebuah bank di New York, yaitu Chemical Bank New York. Namun, fakta ini masih menjadi sebuah controversial oleh banyak pihak, karena banyak bank yang mengclaim sebagai pengguna Automatic Teller Machine pertama, tapi Chemical Bank New York menyatakan hal tersebut berdasarkan catatan yang dibuat oleh Wetzel.
ATM pertama ini tidak diletakkan di lobi bank, melainkan di dinding luar bank yang menghadap ke jalan raya. Dan untuk melindungi mesin dari hujan dan sinar matahari bank menggunakan kanopi. Dan saat ini, perkembangan ATM telah merambah ke seluruh dunia termasuk Negara ini untuk melakukan berbagai transaksi perbankan. Secara umum ATM terdiri dari box ATM, tombol angka sebagai keyboard yang dilengkapi tombol cancel, enter dan exit, kemudian sebuah layar atau monitor dan kamera (optional) yang biasa terlihat dari luar bilik ATM. Sementara di dalam ATM itu sendiri terdiri dari sebuah CPU, keyboard, modem, kotak uang, printer mini dan card reader.






frame relay


Frame Relay adalah protokol packet-switching yang menghubungkan perangkat-perangkat telekomunikasi pada satu Wide Area Network (WAN).[1] Protokol ini bekerja pada lapisan Fisik dan Data Link pada model referensi OSI.[2] Protokol Frame Relay menggunakan struktur Frame yang menyerupai LAPD, perbedaannya adalah Frame Header pada LAPD digantikan oleh field header sebesar 2 bita pada Frame Relay
Keuntungan Frame Relay
Frame Relay menawarkan alternatif bagi teknologi Sirkuit Sewa lain seperti jaringan X.25 dan sirkuit Sewa biasa. Kunci positif teknologi ini adalah:

* Sirkuit Virtual hanya menggunakan lebar pita saat ada data yang lewat di dalamnya, banyak sirkuit virtual dapat dibangun secara bersamaan dalam satu jaringan transmisi.
* Kehandalan saluran komunikasi dan peningkatan kemampuan penanganan error pada perangkat-perangkat telekomunikasi memungkinkan protokol Frame Relay untuk mengacuhkan Frame yang bermasalah (mengandung error) sehingga mengurangi data yang sebelumnya diperlukan untuk memproses penanganan error

Standarisasi Frame Relay
Proposal awal mengenai teknologi Frame Relay sudah diajukan ke CCITT semenjak tahun 1984, namun perkembangannya saat itu tidak signifikan karena kurangnya interoperasi dan standarisasi dalam teknologi ini. Perkembangan teknologi ini dimulai di saat Cisco, Digital Equipment Corporation (DEC), Northern Telecom, dan StrataCom membentuk suatu konsorsium yang berusaha mengembangkan frame relay. Selain membahas dasar-dasar protokol Frame Relay dari CCITT, konsorsium ini juga mengembangkan kemampuan protokol ini untuk berinteroperasi pada jaringan yang lebih rumit. Kemampuan ini di kemudian hari disebut Local Management Interface (LMI)


Format Frame Relay terdiri atas bagian-bagian sebagai berikut:

Flags

Membatasi awal dan akhir suatu frame. Nilai field ini selalu sama dan dinyatakan dengan bilangan hexadesimal 7E atau 0111 1110 dalam format biner. Untuk mematikan bilangan tersebut tidak muncul pada bagian frame lainnya, digunakan prosedur Bit-stuffing dan Bit-destuffing

Address

Terdiri dari beberapa informasi:

1. Data Link Connection Identifier (DLCI), terdiri dari 10 bita, bagian pokok dari header Frame Relay dan merepresentasikan koneksi virtual antara DTE dan Switch Frame Relay. Tiap koneksi virtual memiliki 1 DLCI yang unik.
2. Extended Address (EA), menambah kemungkinan pengalamatan transmisi data dengan menambahkan 1 bit untuk pengalamatan
3. C/R, menentukan apakah frame ini termasuk dalam kategori Perintah (Command) atau Tanggapan (Response)
4. FECN (Forward Explicit Congestion Notification), indikasi jumlah frame yang dibuang karena terjadinya kongesti di jaringan tujuan
5. BECN (Backward Explicit Congestion Notification), indikasi jumlah frame yang mengarah ke switch FR tersebut tetapi dibuang karena terjadinya kongesti di jaringan asal
6. Discard Eligibility, menandai frame yang dapat dibuang jika terjadi kongesti di jaringan

Data

Terdiri dari data pada layer di atasnya yang dienkapsulasi. Tiap frame yang panjangnya bervariasi ini dapat mencapai hingga 4096 oktet.
[sunting] Frame Check Sequence

Bertujuan untuk memastikan integritas data yang ditransmisikan. nilai ini dihitung perangkat sumber dan diverifikasi oleh penerima.

Sirkuit Virtual
Frame pada Frame Relay dikirimkan ke tujuannya dengan menggunakan sirkit virtual (jalur logikal dalam jaringan). Sirkit Virtual ini bisa berupa Sirkit Virtual Permanen (Permanent Virtual Circuit / PVC), atau Sirkit Virtual Switch (Switched Virtual Circuit / SVC)




Permanent Virtual Circuit (PVC)

PVC adalah koneksi yang terbentuk untuk menghubungkan 2 peralatan secara terus menerus tanpa memperhitungkan apakah sedang ada komunikasi data yang terjadi di dalam sirkit tersebut. PVC tidak memerlukan proses pembangunan panggilan seperti pada SVC dan memiliki 2 status kerja:

1. Data Transfer, pengiriman data sedang terjadi dalam sirkit
2. Idle, koneksi antar titik masih aktif tapi tidak ada data yang dikirimkan dalam sirkit

Switched Virtual Circuit (SVC)

SVC adalah koneksi sementara yang terbentuk hanya pada kondisi dimana pengiriman data berlangsung. Status-status dalam koneksi ini adalah:

1. Call Setup, hubungan antar perangkat sedang dibangun
2. Data Transfer, data dikirimkan antar perangkat dalam sirkit virtual yang telah dibangun
3. Idle, ada koneksi aktif yang telah terbentuk, tetapi tidak ada data yang lewat di dalamnya
4. Call Termination, pemutusan hubungan antar perangkat, terjadi saat waktu idle melebihi patokan yang ditentukan

wi fi

(Wireless Fidelity) adalah koneksi tanpa kabel seperti handphone dengan mempergunakan teknologi radio sehingga pemakainya dapat mentransfer data dengan cepat dan aman. Wi-Fi tidak hanya dapat digunakan untuk mengakses internet, Wi-Fi juga dapat digunakan untuk membuat jaringan tanpa kabel di perusahaan. Karena itu banyak orang mengasosiasikan Wi-Fi dengan “Kebebasan” karena teknologi Wi-Fi memberikan kebebasan kepada pemakainya untuk mengakses internet atau mentransfer data dari ruang meeting, kamar hotel, kampus, dan café-café yang bertanda Wi-Fi Hot Spot. Juga salah satu kelebihan dari Wi-Fi adalah kepraktisan,tidak perlu repot memasang kabel network. Untuk masalah kecepatan tergantung sinyal yang diperoleh.

Wi-Fi hanya dapat di akses dengan peralatan Wi-Fi certified Radio seperti komputer, laptop, PDA atau Cellphone. Untuk Laptop versi terbaru keluaran tahun 2007, sudah terdapat Wi-Fi on board. Bila belum tersedia pemakai dapat menginstall Wi-Fi PC Cards yang berbentuk kartu di PCMCIA Slot yang terdapat di laptop atau Wi-Fi USB .

Untuk PDA, pemakai dapat menginstall Compact Flash format Wi-Fi radio di slot yang telah tersedia. Bagi pengguna yang komputer atau PDA - nya menggunakan Windows XP, hanya dengan memasangkan kartu ke slot yang tersedia, Windows XP akan dengan sendirinya mendeteksi area disekitar Anda dan mencari jaringan Wi-Fi yang terdekat dengan Anda. Amatlah mudah menemukan tanda apakah peranti tersebut memiliki fasilitas Wi-Fi, yaitu dengan mencermati logo Wi-Fi CERTIFIED pada kemasannya. Meskipun Wi-Fi hanya dapat diakses ditempat yang bertandakan Wi-Fi Hotspot, jumlah tempat-tempat umum yang menawarkan Wi-Fi Hotspot meningkat secara drastis. Hal ini disebabkan karena dengan dijadikannya tempat mereka sebagai Wi-Fi Hotspot berarti pelanggan mereka dapat mengakses internet yang artinya memberikan nilai tambah bagi para pelanggan.

Layanan Wi-Fi yang ditawarkan oleh masing-masing Hot Spot pun beragam, ada yang menawarkan akses secara gratis seperti halnya di executive lounge Bandara, ada yang mengharuskan pemakainya untuk menjadi pelanggan salah satu ISP yang menawarkan fasilitas Wi-Fi dan ada juga yang menawarkan kartu pra-bayar. Apapun pilihan Anda untuk cara mengakses Wi-Fi, yang terpenting adalah dengan adanya Wi-Fi, Anda dapat bekerja dimana saja dan kapan saja hingga Anda tidak perlu harus selalu terkurung di ruang kerja Anda untuk menyelesaikan setiap pekerjaan.


PERKEMBANGAN DUAL MODE Wi-Fi

Pasar telepon seluler (ponsel) dual mode atau memiliki kemampuan akses jaringan seluler GSM dan jaringan Internet nirkabel Wi-Fi (wireless fidelity) terus meningkat. riset Juniper Research yang memproyeksikan pasar ponsel dual mode pada 2012 mencapai US$68 miliar.

Saat ini permintaan perangkat yang dapat memudahkan aktivitas pengguna untuk melakukan komunikasi melalui jaringan voice over Internet protocol (VoIP) baik dari kalangan korporasi maupun konsumer terus menunjukkan pertumbuhan.

VoIP

VoIP (Voice over Internet Protocol) merupakan teknologi melewatkan suara (voice) ke dalam bentuk data packet melalui jaringan IP (Internet Protocol) yaitu di posisi layer 3, layer network menurut model OSI (Open Systems Interconnection). Sedangkan untuk jaringan IP sendiri dapat melalui banyak cara yaitu dapat melalui jaringan Wi-Fi hotspot, jaringan kabel broadband DSL (digital subscriber line), TV kabel, Satellite dan lain sebagainya.

Sehingga dapat disimpulkan bahwa dengan menggunakan ponsel dual mode tersebut, maka selain dapat melakukan pembicaraan lewat jaringan seluler, kita juga dapat melakukan pembicaraan VoIP melalui Wi-Fi, atau sering disebut sebagai VoWi-Fi (voice over wireless fidelity).







wi fi

(Wireless Fidelity) adalah koneksi tanpa kabel seperti handphone dengan mempergunakan teknologi radio sehingga pemakainya dapat mentransfer data dengan cepat dan aman. Wi-Fi tidak hanya dapat digunakan untuk mengakses internet, Wi-Fi juga dapat digunakan untuk membuat jaringan tanpa kabel di perusahaan. Karena itu banyak orang mengasosiasikan Wi-Fi dengan “Kebebasan” karena teknologi Wi-Fi memberikan kebebasan kepada pemakainya untuk mengakses internet atau mentransfer data dari ruang meeting, kamar hotel, kampus, dan café-café yang bertanda Wi-Fi Hot Spot. Juga salah satu kelebihan dari Wi-Fi adalah kepraktisan,tidak perlu repot memasang kabel network. Untuk masalah kecepatan tergantung sinyal yang diperoleh.

Wi-Fi hanya dapat di akses dengan peralatan Wi-Fi certified Radio seperti komputer, laptop, PDA atau Cellphone. Untuk Laptop versi terbaru keluaran tahun 2007, sudah terdapat Wi-Fi on board. Bila belum tersedia pemakai dapat menginstall Wi-Fi PC Cards yang berbentuk kartu di PCMCIA Slot yang terdapat di laptop atau Wi-Fi USB .

Untuk PDA, pemakai dapat menginstall Compact Flash format Wi-Fi radio di slot yang telah tersedia. Bagi pengguna yang komputer atau PDA - nya menggunakan Windows XP, hanya dengan memasangkan kartu ke slot yang tersedia, Windows XP akan dengan sendirinya mendeteksi area disekitar Anda dan mencari jaringan Wi-Fi yang terdekat dengan Anda. Amatlah mudah menemukan tanda apakah peranti tersebut memiliki fasilitas Wi-Fi, yaitu dengan mencermati logo Wi-Fi CERTIFIED pada kemasannya. Meskipun Wi-Fi hanya dapat diakses ditempat yang bertandakan Wi-Fi Hotspot, jumlah tempat-tempat umum yang menawarkan Wi-Fi Hotspot meningkat secara drastis. Hal ini disebabkan karena dengan dijadikannya tempat mereka sebagai Wi-Fi Hotspot berarti pelanggan mereka dapat mengakses internet yang artinya memberikan nilai tambah bagi para pelanggan.

Layanan Wi-Fi yang ditawarkan oleh masing-masing Hot Spot pun beragam, ada yang menawarkan akses secara gratis seperti halnya di executive lounge Bandara, ada yang mengharuskan pemakainya untuk menjadi pelanggan salah satu ISP yang menawarkan fasilitas Wi-Fi dan ada juga yang menawarkan kartu pra-bayar. Apapun pilihan Anda untuk cara mengakses Wi-Fi, yang terpenting adalah dengan adanya Wi-Fi, Anda dapat bekerja dimana saja dan kapan saja hingga Anda tidak perlu harus selalu terkurung di ruang kerja Anda untuk menyelesaikan setiap pekerjaan.


PERKEMBANGAN DUAL MODE Wi-Fi

Pasar telepon seluler (ponsel) dual mode atau memiliki kemampuan akses jaringan seluler GSM dan jaringan Internet nirkabel Wi-Fi (wireless fidelity) terus meningkat. riset Juniper Research yang memproyeksikan pasar ponsel dual mode pada 2012 mencapai US$68 miliar.

Saat ini permintaan perangkat yang dapat memudahkan aktivitas pengguna untuk melakukan komunikasi melalui jaringan voice over Internet protocol (VoIP) baik dari kalangan korporasi maupun konsumer terus menunjukkan pertumbuhan.

VoIP

VoIP (Voice over Internet Protocol) merupakan teknologi melewatkan suara (voice) ke dalam bentuk data packet melalui jaringan IP (Internet Protocol) yaitu di posisi layer 3, layer network menurut model OSI (Open Systems Interconnection). Sedangkan untuk jaringan IP sendiri dapat melalui banyak cara yaitu dapat melalui jaringan Wi-Fi hotspot, jaringan kabel broadband DSL (digital subscriber line), TV kabel, Satellite dan lain sebagainya.

Sehingga dapat disimpulkan bahwa dengan menggunakan ponsel dual mode tersebut, maka selain dapat melakukan pembicaraan lewat jaringan seluler, kita juga dapat melakukan pembicaraan VoIP melalui Wi-Fi, atau sering disebut sebagai VoWi-Fi (voice over wireless fidelity).